Frictional Granular Mechanics: A Variational Approach

by R. Holtzman, Dmitriy B. Silin, Tadeusz W. Patzek
Year: 2010


​Holtzman, R., D. B. Silin, and T. W. Patzek, “Frictional Granular Mechanics: A Variational Approach,” International Journal for Numerical Methods in Engineering, 81(10), 1259-1280, 2010


The mechanical properties of a cohesionless granular material are evaluated from grain-scale simulations. Intergranular interactions, including friction and sliding, are modeled by a set of contact rules based on the theories of Hertz, Mindlin, and Deresiewicz. A computer-generated, three-dimensional, irregular pack of spherical grains is loaded by incremental displacement of its boundaries. Deformation is described by a sequence of static equilibrium configurations of the pack. A variational approach is employed to find the equilibrium configurations by minimizing the total work against the intergranular loads. Effective elastic moduli are evaluated from the intergranular forces and the deformation of the pack. Good agreement between the computed and measured moduli, achieved with no adjustment of material parameters, establishes the physical soundness of the proposed model.


Micromechanics Grain-scale Simulations Intergranular Friction Quasi-static Model Effective Elastic Moduli Principle of Least Work